| 
      
      
        
          | Let's see if
    we can convert some numbers from one base to another.  There are many
    ways to work with number base conversions.  We will be discussing only
    one method.  Please feel free to use any conversion system with which
    you are comfortable.Don't panic!  Yes, it is math.  But you can do it!
 | 
             |    Example 1: 
      Convert 510
      (read 5 base 10) into base 2. 
        
        
          
            |  | The Process: 1.  Divide the "desired" base (in this case base 2)
              INTO the number you are trying to convert.
 2.  Write the quotient (the answer) with a remainder like you
              did in elementary school.
 3.  Repeat this division process using the whole number from
              the previous quotient (the number in front of the remainder).
 4.  Continue repeating this division until the number in
              front of the remainder is only zero.
 5.  The answer is the remainders read from the bottom up.
 510 =
              1012  (a
              binary conversion) |    Example 2:  Convert
    14010 to base 8. 
        
        
          
            |  | The process is the same as in example
              1.  The answer is: 14010
              = 2148 (an octal conversion)
 
 |     Example 3:  Convert
      11010 to base 16. 
        
        
          
            |  | The process remains the same.  BUT
              there is one problem in base 16 that did not appear in the
              examples above.  One of the remainders in this division
              contains 2 digits (14).  You CANNOT allow 2 digits to reside
              in one of the place holdings in a number.  For this reason,
              base 16, which can have six 2-digit remainders (10, 11, 12, 13,
              14, 15) replaces these values with alphabetic representations
              (10-A, 11-B, 12-C, 13-D, 14-E, 15-F).  The answer is: 11010
              = 6E16 (a hexadecimal
              conversion)
 |    
       
     Return to Topic Menu  |
Computer Science Main Page |
MathBits.com  |
	Terms of Use  
         
     |